If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-16=0
a = 2; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·2·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*2}=\frac{0-8\sqrt{2}}{4} =-\frac{8\sqrt{2}}{4} =-2\sqrt{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*2}=\frac{0+8\sqrt{2}}{4} =\frac{8\sqrt{2}}{4} =2\sqrt{2} $
| 6x+11=3x+29+9x+6 | | 41.69=8g+3.61 | | K+6=15-2k | | 5z-11=39 | | 5x-13-x=17 | | 8x-47=68 | | 3(y-2)-4=2(y-18) | | 16x+15=95 | | 4n+8=-n+8n-16 | | (2x+3)+(2x+7)+(2x)=(2x)+(2x)+(3x+6) | | 11+3n=11 | | 3y/2-y/2=5 | | 2x-5=6x+7-8x | | 3u=7.05u= | | 2x+x-4x-2=13 | | -3z+10-2z=-2(z-5)+5 | | Y+2=x+8 | | 3+(1/2)x+100=160 | | 3+((1/2)x)+100=160 | | 3g+3(-5+3g)=1-(g) | | -3=1/12x | | 3(-m/3)=3(-4) | | 2x+2(x+3)=22 | | 8+2k=3k+2 | | -137.4=-2.4-9n | | -2(t-5)-3t=60 | | 100.66=-6.3m-1.4 | | 137=2-9r | | 108=3(6v-6) | | -13=-6+n/2 | | 16/3x=128 | | 5-(2x-4)=5x-12 |